Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Integr Plant Biol ; 66(3): 510-531, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38441295

RESUMO

The basis of modern pharmacology is the human ability to exploit the production of specialized metabolites from medical plants, for example, terpenoids, alkaloids, and phenolic acids. However, in most cases, the availability of these valuable compounds is limited by cellular or organelle barriers or spatio-temporal accumulation patterns within different plant tissues. Transcription factors (TFs) regulate biosynthesis of these specialized metabolites by tightly controlling the expression of biosynthetic genes. Cutting-edge technologies and/or combining multiple strategies and approaches have been applied to elucidate the role of TFs. In this review, we focus on recent progress in the transcription regulation mechanism of representative high-value products and describe the transcriptional regulatory network, and future perspectives are discussed, which will help develop high-yield plant resources.


Assuntos
Alcaloides , Plantas Medicinais , Humanos , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Alcaloides/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Terpenos/metabolismo
2.
Curr Res Food Sci ; 5: 1760-1768, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36268136

RESUMO

CULLIN (CUL) proteins are E3 ubiquitin ligases that are involved in a wide variety of biological processes as well as in response to stress in plants. In Salvia miltiorrhiza, CUL genes have not been characterized and its role in plant development, stress response and secondary metabolite synthesis have not been studied. In this study, genome-wide analyses were performed to identify and to predict the structure and function of CUL of S. miltiorrhiza. Eight CUL genes were identified from the genome of S. miltiorrhiza. The CUL genes were clustered into four subgroups according to phylogenetic relationships. The CUL domain was highly conserved across the family of CUL genes. Analysis of cis-acting elements suggested that CUL genes might play important roles in a variety of biological processes, including abscission reaction acid (ABA) processing. To investigate this hypothesis, we treated hairy roots of S. miltiorrhiza with ABA. The expression of CUL genes varied obviously after ABA treatment. Co-expression network results indicated that three CUL genes might be involved in the biosynthesis of phenolic acid or tanshinone. In summary, the mining of the CUL genes in the whole genome of S. miltiorrhiza contribute novel information to the understanding of the CUL genes and its functional roles in plant secondary metabolites, growth and development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...